Problem 3: Brillouin zone (3 points):
For a tetragonal crystal (primitive Bravais lattice \(c/a = 1.5 \)) construct the \(k_x - k_z \) plane of the first two Brillouin zones. The Fermi surface of the free electrons is an ellipsoid with the axis 1.5 \(\tilde{A} \) and 1.5 \(\tilde{C} \). In the reduced zone scheme determine the part of the Fermi surface that belongs to the second zone.

Problem 2: Valence band of semiconductors (6 points):
For \(k \) near 0, the valence band of many semiconductors (for example Si, Ge, GaAs) is determined by

\[
E(\vec{k}) = \frac{\hbar^2}{2m_0} \left[-A \cdot k^2 \pm \sqrt{B^2 \cdot k^4 + C^2 \cdot \left(k^2_x \cdot k^2_y + k^2_y \cdot k^2_z + k^2_z \cdot k^2_x\right)} \right]
\]

The two signs correspond to the light- and the heavy-hole band. Determine the tensor of the reciprocal effective mass \((1/m^*)_{ij} \) for \(\vec{k} \parallel [110] \) in the limit \(k \rightarrow 0 \). Calculate the tensor for silicon with \(A = 4.29 \text{ Å}, \ B = 0.68 \text{ Å} \) and \(C = 4.87 \text{ Å} \).

Problem 3: Heavy and light holes (5 points):
A non-degenerate semiconductor is described by a parabolic conduction band (effective electron mass: \(m^* \); minimum energy at \(k = 0 \): \(E_C \)) and two parabolic valence bands (effective hole masses: \(m_+ \) and \(m_- \); maximum energy of both bands at \(k = 0 \): \(E_V \)). Calculate the concentration of heavy and light holes \((p_+ \) and \(p_- \)) from the neutrality condition \(n = p_+ + p_- \).